比例线段教案

时间:2024-07-19 23:18:06
比例线段教案

比例线段教案

作为一名默默奉献的教育工作者,常常要写一份优秀的教案,编写教案有利于我们准确把握教材的重点与难点,进而选择恰当的教学方法。写教案需要注意哪些格式呢?以下是小编收集整理的比例线段教案,仅供参考,希望能够帮助到大家。

比例线段教案1

一、教学目标

1.使学生在理解的基础上掌握平行线分线段成比例定理及其推论,并会灵活应用.

2.使学生掌握三角形一边平行线的判定定理.

3.已知线的成已知比的作图问题.

4.通过应用,培养识图能力和推理论证能力.

5.通过定理的教学,进一步培养学生类比的数学思想.

二、教学设计

观察、猜想、归纳、讲解

三、重点、难点

l.教学重点:是平行线分线段成比例定理和推论及其应用.

2.教学难点:是平行线分线段成比例定理的正确性的说明及推论应用.

四、课时安排

1课时

五、教具学具准备

投影仪、胶片、常用画图工具.

六、教学步骤

【复习提问】

叙述平行线分线段成比例定理(要求:结合图形,做出六个比例式).

【讲解新课】

在黑板上画出图,观察其特点: 与 的交点A在直线 上,根据平行线分线段成比例定理有: ……(六个比例式)然后把图中有关线擦掉,剩下如图所示,这样即可得到:

平行于 的边BC的直线DE截AB、AC,所得对应线段成比例.

在黑板上画出左图,观察其特点: 与 的交点A在直线 上,同样可得出: (六个比例式),然后擦掉图中有关线,得到右图,这样即可证到:

平行于 的边BC的直线DE截边BA、CA的延长线,所以对应线段成比例.

综上所述,可以得到:

推论:(三角形一边平行线的性质定理)平行于三角形一边的直线截其他两边(或两边的延长线),所得的对应线段成比例.

如图, (六个比例式).

此推论是判定三角形相似的基础.

注:关于推论中“或两边的延长线”,是指三角形两边在第三边同一侧的延长线,如果已知 ,DE是截线,这个推论包含了下图的各种情况.

这个推论不包含下图的情况.

后者,教学中如学生不提起,可不必向学生交待.(考虑改用投影仪或小黑板)

例3 已知:如图, ,求:AE.

教材上采用了先求CE再求AE的方法,建议在列比例式时,把CE写成比例第一项,即: .

让学生思考,是否可直接未出AE(找学生板演).

【小结】

1.知道推论的探索方法.

2.重点是推论的正确运用

七、布置作业

(1)教材P215中2.

(2)选作教材P222中B组1.

八、板书设计

数学教案-平行线分线段成比例定理 (第二课时)

比例线段教案2

一、教学目标

1、理解成比例线段以及项、比例外项、比例内项、第四比例项、比例中项等的概念、

2、把握比例基本性质和合分比性质、

3、通过通过的应用,培养学习的计算能力、

4、通过比例性质的教学,渗透转化思想、

5、通过比例性质的教学,激发学生学习爱好、

二、教学设计

先学后做,启发引导

三、重点及难点

1、教学重点比例性质及应用、

2、教学难点正确理解成比例线段及应用、

四、课时安排

1课时

五、教具学具预备

股影仪、胶片、常用画图工具

六、教学步骤

复习提问

1、什么是线段的比?

2、已知这两条线段的比是吗,为什么?

讲解新课

1、比例线段:见教材p203页。

如:见教材p203页图5—2。

又如:

即a、b、c、d是成比例线段。

注:①已知问这四条线段成比例吗?

(答:成比例。,这里与顺序无关)。

②若已知a、b、c、d是成比例线段,是指不能写成(在说四条线段成比例时,一定要将这四条线段按顺序列出,这里与顺序有关)。

板书教材p203页比例线段的一些附属概念。

2、比例的性质:

(1)比例的基本性质:假如,那么。

它的逆命题也成立,即:假如,那么。

推论:假如,那么。

反之亦然:假如,那么。

①基本性质证实了“比例式”和“等积式”是可以互化的。

②由,除可得到外,还可得到其它七个比例式。即由一个等积式,可写成八个不同的比例式(让学生试写)。然后教师教给方法。即:先按左:右=右:左“写出四个比例式。 。再由等式的对称性写出另外四个比例式:。注重区别与联系。

③用比例的基本性质,可检查所作的比例变形是否正确。即把比例式化成等积式,看与原式所得的等积式是否相同即可。

④等积化比例、比例化等积是本章一个重要能力,要使学生达到非常熟练的程度,以利于后面学习。

(2)合比性质:假如,那么

证实:∵,∴即:

同理可证:(找学生板演)

(3)等比性质:假如

那么

证实:设;则

等比性质的证实思路及思想非常重要,它是解决数学中连比问题的通法,希望同学们认真体会,务必把握。

例1(要求了解即可)

(1)已知:,求证:。

证实:∵,∴

“通法”:∵,∴即

(2)已知:,求证:。

方法一:

方法二:

(1)÷(2)得:

小结

(1)比例线段的概念及附属概念。

(2)比例的基本性质及其应用。

八、布置作业

(1)求

① ② ③

(2)求下列各式中的x

① ② ③ ④

九、板书设计

1、比例线段:

教师板书定义

………

比例线段的附属概念

………

2、比例的性质

(1)比例基本性质

…………

3、课堂练习

比例线段教案3

一、学生知识状况分析

学生在本章前两课时的学习中,通过对相似图形的直观感知,体会到可以用对应线段长度的比来描述两个形状相同的平面图形的大小 ……此处隐藏6959个字……)提出问题

1、引出问题:相交弦定理是两弦相交于圆内一点.如果两弦延长交于圆外一点P,那么该点到割线与圆交点的四条线段PA,PB,PC,PD的长之间有什么关系?(如图1)

当其中一条割线绕交点旋转到与圆的两交点重合为一点(如图2)时,由圆外这点到割线与圆的两交点的两条线段长和该点的切线长PA,PB,PT之间又有什么关系?

2、猜想:引导学生猜想出图中三条线段PT,PA,PB间的关系为PT2=PAPB.

3、证明:

让学生根据图2写出已知、求证,并进行分析、证明猜想.

分析:要证PT2=PAPB, 可以证明,为此可证以 PAPT为边的三角形与以PT,BP为边的三角形相似,于是考虑作辅助线TP,PB.(图3).容易证明PTA=B又P,因此△BPT∽△TPA,于是问题可证.

4、引导学生用语言表达上述结论.

切割线定理 从圆外一点引圆的切线和割线,切线长是这点到割线与圆交点的两条线段长的比例中项.

(二)切割线定理的推论

1、再提出问题:当PB、PD为两条割线时,线段PA,PB,PC,PD之间有什么关系?

观察图4,提出猜想:PAPB=PCPD.

2、组织学生用多种方法证明:

方法一:要证PAPB=PCPD,可证此可证以PA,PC为边的三角形和以PD,PB为边的三角形相似,所以考虑作辅助线AC,BD,容易证明PAC=D,P,因此△PAC∽△PDB. (如图4)

方法二:要证,还可考虑证明以PA,PD为边的三角形和以PC、PB为边的三角形相似,所以考虑作辅助线AD、CB.容易证明D,又P. 因此△PAD∽△PCB.(如图5)

方法三:引导学生再次观察图2,立即会发现.PT2=PAPB,同时PT2=PCPD,于是可以得出PAPB=PCPD.PAPB=PCPD

推论:从圆外一点引圆的两条割线,这一点到每条割线与圆的交点的两条线段长的积相等.(也叫做割线定理)

(三)初步应用

例1 已知:如图6,⊙O的割线PAB交⊙O于点A和B,PA=6厘米,AB=8厘米, PO=10.9厘米,求⊙O的半径.

分析:由于PO既不是⊙O的切线也不是割线,故须将PO延长交⊙O于D,构成了圆的一条割线,而OD又恰好是⊙O的半径,于是运用切割线定理的推论,问题得解.

(解略)教师示范解题.

例2 已知如图7,线段AB和⊙O交于点C,D,AC=BD,AE,BF分别切⊙O于点E,F,

求证:AE=BF.

分析:要证明的两条线段AE,BF均与⊙O相切,且从A、B 两点出发引的割线ACD和BDC在同一直线上,且AC=BD,AD=BC. 因此它们的积相等,问题得证.

学生自主完成,教师随时纠正学生解题过程中出现的错误,如AE2=ACCD和BF2=BDDC等.

巩固练习:P128练习1、2题

(四)小结

知识:切割线定理及推论;

能力:结合具体图形时,应能写出正确的等积式;

方法:在证明切割线定理和推论时,所用的构造相似三角形的方法十分重要,应注意很好地掌握.

(五)作业 教材P132中,11、12题.

探究活动

最佳射门位置

国际足联规定法国世界杯决赛阶段,比赛场地长105米,宽68米,足蛎趴?.32米,高2.44米,试确定边锋最佳射门位置(精确到l米).

分析与解 如图1所示.AB是足球门,点P是边锋所在的位置.最佳射门位置应是使球员对足球门视角最大的位置,即向P上方或下方移动,视角都变小,因此点P实际上是过A、B且与边线相切的圆的切点,如图1所示.即OP是圆的切线,而OB是圆的割线.

故 ,又 ,

OB=30.34+7.32=37.66.

OP=(米).

注:上述解法适用于更一般情形.如图2所示.△BOP可为任意角

比例线段教案8

教学内容:教科书第16页上的线段比例尺,练习五的第49题。

教学目的:使学生理解线段比例尺的含义,会根据线段比例尺求图上距离或实际距离。

教具准备:教师准备一些线段比例尺的地图或平面图。

教学过程:

一、导人新课

教师:上节课我们学习了一些比例尺的知识,我们学过的比例尺都是用数值来标明的,如比例尺1:10000就表示图上距离是l厘米实际距离就是10000厘米,像这样的比例尺叫做数值比例尺。除了数值比例尺外,还有线段比例尺。什么是线段比例尺呢:这就是我们这节课要学习的内容。(板书课题)

二、新课

教师:线段比例尺是在图上附有一条注有数量的线段。用来表示和地面上相对应的实际距离。同学们可以翻开教科书第16页.看右下角有一幅地图。地图的下面就 有一条线段比例尺。它上面有0、50和100几个数,还注明了长度单位千米。这些数和单位表示什么意思呢?大家量一量从0到50这段线段有多长。(1厘米。)从50到100呢?(也是1厘米。)从0到50就表示地图上1厘米的距离相当于地面上50千米的实际距离。从0到100就表示地图上2厘米的距离相当于地面上100千米的实际距 离。

然后教师问:

l如果知道了两个城市之间的图上距离,你能不能计算出这两个城市之间的实际距离?

让学生在地图上找到沈阳和长春这两个城市,并量出它们的距离是多少厘米。再想一想:要求地面上这两个城市之间的实际距离大约是多少千米,该怎样计算?

引导学生想:1厘米.的图上距离代表地面上多少千米的实际距离,(50千米。)我们量出沈阳到长春的图上距离是5.5厘米,就代表几个50千米的实际距离。(5.5个50千米。)怎么列式计算?

让学生说怎样列式。教师板书:505.5=275(千米)

之后,进一步提出:

你能不能把这个地图上的线段比例尺改写成数值比例尺?怎样改写?(因为图上1厘米相当于地面上50千米的实际距离,现在图上距离和实际距离的单位不同,根据图上距离:实际距离=比例尺,要把图上距离和实际距离的单位化成同级单位,50

千米等于5000000厘米。所以这条线段比例尺改写成数值比例尺就是1:5000000。)

教师板书出数值比例尺。

三、课堂练习

完成练习五的第49题:

1.第5题,让学生独立填表:填表前,要提醒学生图上距离的单位应用什么,实际距离的单位应用什么。

2.第8题,让学生独立计算。集体订正后,让学生按照东南西北的方位说说拖拉机站、电影院、汽车站和供销社离学校的距离。如,电影院在学校的南面,距学校200米;拖拉机站在学校的西北面,距学校2500米。

3.第9题,让学生先求出试验田长和宽的图上距离,然后画出平面图,并且要注意在平面图上注明比例尺。

《比例线段教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式